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1 Introduction

Neuroimaging data such as electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) data is heavily impacted by noise. In general, it is dif-
ficult if not impossible to extract underlying neural activity from noisy raw data.
To overcome the poor signal to noise ratio (SNR) it is customary to average over
repeated trials. Such practice improves the SNR as noise is often unrelated to the
event and hence self-cancels (has zero mean) in theory. As such, the power of white
noise decreases as σ2

noise/Nepoch, where σ2
noise is the variance of the noise and is as-

sumed constant over the trials while Nepoch is the number of trials. (Notice that the
relation is only correct for white noise — in general EEG noise is correlated in a
way that the true falloff will differ). As SNR varies through the trials it would be
desirable to give more importance to trials with high SNR than to trials with low
SNR.

To extract the underlying neural activity it is customary, prior to or post averaging,
to decompose the data using various types of decompositions based on the bilinear
factor analytic model

Xi,j =
∑D

d=1
Ai,dBj,d + Ei,j

where Ei,j denotes the residual (Donchin and Heffley, 1978; Makeig et al., 1996,
1997, 2002; McKeown et al., 1998, 2003). For EEG and fMRI data the recorded data
may be represented by the channel/voxel × time matrix X ∈ RI×J . The decom-
position above then describes the data as a sum of components separated into time
profiles B1, . . . ,BD with corresponding spatial topographies A1, . . . ,AD. How-
ever, since modeling data by a factor analytic type decomposition is ambiguous,
additional constraints that are often not physiologically justified have to be im-
posed. For example, in Singular Value Decomposition (SVD) and Principal Com-
ponent Analysis (PCA), components are assumed to be uncorrelated; whereas in In-
dependent Component Analysis (ICA), components are assumed to be statistically
independent.

If the data are recorded overK trials of varying strength, we obtain a channel/voxel
× time × trial hypermatrix X ∈ RI×J×K . Forming a trilinear decomposition as
in factor analysis yields the CANDECOMP/PARAFAC (CP) model Carroll and Chang
(1970); Harshman (1970). The CP model is given by

Xi,j,k =
∑D

d=1
Ai,dBj,dCk,d + Ei,j,k.

Here Cd gives the degree in which the profile time series Bd with spatial topogra-
phy Ad is present throughout the various trials. The model is illustrated in Figure
1. As Kruskal proved in (Kruskal, 1977), the CP model is unique under mild con-
ditions. Conditions that, in the presence of noise in the data, are practically always
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satisfied. Consequently, modeling repeated trials by CP in theory not only improves
the component identification but also resolves the ambiguities encountered when
modeling the averaged data by (bilinear) factor analysis (Kruskal, 1977). Notice
that the application of CP to EEG was already suggested in the original paper on
CP (Harshman, 1970) and was later reinvented in Möcks (1988) under the name
topographic component analysis. In Andersen and Rayens (2004) it was further
demonstrated how the CP model is useful in the analysis of neuroimaging data
such as fMRI (Andersen and Rayens, 2004). Additional applications of multilinear
(also called multiway) modeling in EEG and fMRI include (Möcks, 1988; Field and
Graupe, 1991; Wang et al., 2000; Beckmann and Smith, 2005; Miwakeichi et al.,
2004; Mørup et al., 2006; De Vos et al., 2007; Acar et al., 2007; Dyrholm et al.,
2007).

Time shifts occur naturally in fMRI data. For instance, these could be due to hemo-
dynamic delay (Buxton et al., 1998) or they could arise in stimuli studies (Sereno
et al., 1995), where delays play a particularly important role. For EEG data, onset
changes of prominent physiological activity not phase locked to the event (such as
eye blinks and alpha activity) are known to cause delays across trials. Extending
the CP model to incorporate delays form the shifted CP model (shifted over third
mode), henceforth denoted as SCP model,

Xi,j,k =
∑D

d=1
Ai,dBj−τk,d,dCk,d + Ei,j,k. (1)

Here, each time profile Bd is shifted according to the vector τ k,d that represents
time-samples dependent on the k index of the third mode. Hence, the shifts will
be along the j index. See also Figure 1. Data generated from the SCP model is no
longer multilinear and therefore the CP model is no longer a valid model for the
data. When data violates multilinearity, ‘CP-degenerate’ solutions are known to oc-
cur. Roughly speaking, this refers to solutions in which some component loadings
are highly correlated in all modes and the elements of these components become
arbitrarily large (Stegeman, 2007). CP-degeneracy makes the estimation unstable,
the algorithm slow to converge (or even diverge), and the result difficult to interpret
— largely because the model is plaqued by strong between-component cancellation
(Harshman and Lundy, 1984). For a mathematically precise discussion, the reader
is referred to de Silva and Lim (2008). To avoid CP-degeneracy in the CP model,
artificial restrictions in the form of orthogonality (Field and Graupe, 1991; Lundy
et al., 1989) or independence (Beckmann and Smith, 2005) have been imposed;
alternatively, the signal is analyzed via purely additive models based on analysis
of amplitudes in a spectral representation (Miwakeichi et al., 2004; Mørup et al.,
2006). We found these ad hoc measures unsatisfactory. Rather than restricting the
CP model, we propose a pseudo-mutilinear model using the unambiguous CP model
combined with a time-shift accounting for explicit delays. We claim that this will
alleviate the issues inherent to previous matrix and multilinear decompositions of
neuroimaging data. We will support our claim in this paper with several experi-
ments with actual neuroimaging data.
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Fig. 1. The CP model can be considered a straightforward generalization of 2-way (matrix)
decomposition (left panel) to arrays of more than two modalities (middle panel). Thus, the
data is described by an outer product of factors pertaining to each of the modalities. The
shifted CP model allow shifts to occur over the second mode such that for each index of the
third mode the component of the second mode is shifted a given amount.

Our modeling of delays is further motivated by a number of papers that explain
how degenerate solutions might be caused by component delays (Field and Graupe,
1991; Andersen and Rayens, 2004; Harshman et al., 2003a; Hong and Harshman,
2003). Indeed, if shifts are causing CP-degeneracy, then it is more natural to ex-
tend the CP model to accomodate shifts rather than resorting to orthogonality or
independence constraints that may not be physiologically justified. Furthermore,
a decomposition into profiles resembling pairs of functions and their derivatives,
e.g. pairs of cosine and sine functions in (Field and Graupe, 1991), provides strong
evidence that neuroimaging data should be decomposed by a model accounting for
shifts rather than models based on instantaneous mixing.

We stress here that CP-degeneracy should not be assumed to be a consequence of
poor modeling. It has been shown in de Silva and Lim (2008) that CP-degeneracy,
a manifestation of the ill-posedness of the best rank-r approximation problem for
hypermatrices, is not an isolated phenomenon. Two results are worth highlighting
here: (1) CP-degeneracy occurs on a set of positive volume, i.e. if we pick a random
X ∈ RI×J×K , there is a non-zero probability that it will be CP-degenerate; (2)
a non-degenerate case can become CP-degenerate under small noisy perturbation.
As such, it is important to have safeguards against CP-degeneracy built into CP-type
models. The SCP model in this paper is proposed with this in mind. We demonstrate
that the CP model, when suitably modified to allow for time shifts, will accurately
capture the features of time-delayed data sets and at the same time avoid the CP-
degeneracy pitfall.

The paper is structured as follows. We first derive the algorithm for SCP and demon-
strate the algorithm on synthetic and real EEG data. Next, we validate the usefulness
of our SCP decomposition for fMRI data based on a retinotopic mapping paradigm
where delay modeling is used when forming the retinotopic maps (Sereno et al.,
1995). In particular, we will investigate the following questions:

(1) Can shifts improve component identification?
(2) Can shifts yield a more compact representation of neuroimaging data?
(3) Does the SCP model alleviate degeneracy?

4



2 Methods

Factor analysis with shifts have been treated in numerous papers (Bell and Se-
jnowski, 1995; Torkkola, 1996; Emile and Comon, 1998; Yeredor, 2003; Harshman
et al., 2003a,b; Truccolo et al., 2003; Mørup et al., 2007a,b). Shifts based on the
CP model has previously been treated in (Hong and Harshman, 2003; Knuth et al.,
2006). Unfortunately, the algorithms devised are prohibitively slow for large scale
problems such as EEG and fMRI and does not allow for non-integer shifts. Presently,
we derive an efficient algorithm for SCP with the following benefits

• Closed form solutions are obtained for all modes while keeping the remaining
modes fixed.
• Integer shifts are estimated by cross-correlation rather than the exhaustive searches

used in (Hong and Harshman, 2003).
• Non-integer shifts can be found by iterative methods in the frequency domain.

Non-integer shifts are in particular important for fMRI data due to low temporal
resolution.

2.1 Notations

In the following Ui,j,k, Ui,j and Ũi,f,k, Ũi,f will denote the same hypermatrix and
matrix of size I × J ×K and I × J in the time and frequency domain respectively
using the discrete fourier transform (DFT) and inverse fourier transform along the
second modality indexed by j. Furthermore, U • V denotes the direct product,
i.e. element-wise multiplication. Let τ be a matrix containing the delays pertain-
ing to each index of C. Notice, shifting the dth component time series τ sam-
ples, i.e. Xi−τ,d corresponds in the frequency domain to the complex multiplica-
tion X̃f,de

−2 f−1
J
πıτ . Note that we write ı :=

√
−1 to distinguish it from the letter

i used in the indices. Thus, a combined shift and mixing matrix at frequency f
can be stated as C̃(f) = C • e−2π(f−1)ıτ/J where eτ denotes element-wise expo-
nentiating the elements of τ . The ith row of a matrix will be denoted Ui,:. The
n-mode matricizing operation unfolds the hypermatrix U I1×I2×...×IN into a matrix
U
In×I1·I2···In−1·In+1···IN
(n) while the folding (i.e. hypermatrizing) of U(n) to the hyper-

matrix U denotes the opposite operation. Finally, the Khatri-Rao product is given
by A�B = [A1⊗B1 A2⊗B2 · · · AD ⊗BD] where ⊗ is the regular Kronecker
product. D in the CP and SCP model will denote the number of components. Only
if the CP model is exact will D also denote the rank of the modeled hypermatrix.
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2.2 CP model estimation

The CP model is normally estimated by alternating least squares (Bro and Anders-
son, 2000) which solves for A, B and C according to

X(1) = A(C�B)T + E(1) via A← X(1)(C�B)T†,

X(2) = B(C�A)T + E(2) via B← X(2)(C�A)T†,

X(3) = C(B�A)T + E(3) via C← X(3)(B�A)T†,

i.e. by formulating the estimation problem as regular matrix analysis problems us-
ing the matricizing operation and Khatri-Rao product and alternatingly solving for
the loadings of each mode via Moore-Penrose inverses.

The CP model is unique if

kA + kB + kC ≥ 2D′ + 2 (2)

where D′ is the rank of the hypermatrix and kA is the Kruskal rank denoting
the smallest subset of columns of A that is guaranteed to be linearly indepen-
dent (Kruskal, 1977). Thus, kA ≤ rank(A). When modeling the data using a low
rank approximation (D < D′) the above criterion guarantees that the residuals are
uniquely defined. In the presence of noise both A, B and C will have full rank and
uniqueness is also guaranteed by proofs given in (Harshman, 1972; Möcks, 1988).

2.3 SCP model

In (Hong and Harshman, 2003) the SCP model was proposed and an algorithm
devised based on exhaustive integer searches over all possible shifts. This is how-
ever very expensive making the estimation infeasible when including many shifts.
Thus, we here propose to solve the model in the frequency domain rather than
the time-domain. The attractive property being that each integer delay τ k,d has a
closed form solution while keeping the remaining delays fixed given by calculating
cross-correlations which is inexpensive in the frequency domain. Furthermore, in a
frequency representation non-integer delays can be estimated using gradient based
searches. Finally, in a frequency representation B has a closed form solution.

In the frequency domain the SCP model is given by

X̃i,f,k =
∑D

d=1
Ai,dB̃f,dCk,de

−2π(f−1)ıτk,d/J + Ẽi,f,k.

Thus, the sources Bd are assumed to be periodic such that shifts τ k,d correspond to
the complex multiplication of B̃d with the factor exp[−2(f − 1)πıτ k,d/J ]. Thus,
we assume that the data can be arranged such that each source time course in each
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epoch is periodic, if this is not the case the periodicity can be enforced by intro-
ducing a temporal windowing function. Notice, due to Parseval’s identity there is
a one-to-one correspondence between the least squares error in the time and fre-
quency domain such that the least squares minimization can be performed arbitrar-
ily between the two domains

∑
i,j,k
‖Ei,j,k‖2 =

1

J

∑
i,f,k
‖Ẽi,f,k‖2.

2.3.1 A, B and C update

Let B̃(k)
f,d = B̃f,d•exp[−2(f−1)πıτ k,d/J ], i.e. B̃ componentwise shifted according

to the delays to the kth channel. Let further Zj+k(J−1),d = Ck,dB
(k)
j,d , i.e. the Khatri-

Rao product between C and the shifted version of B.

Using the n-mode matricizing and the Khatri-Rao product we can again state the
estimation of A, B and C by ordinary factor analysis

X(1) = AZT + E(1) via A← X(1)Z
T†

X̃(2)f,:
= B̃f,:(C̃

(f) �A)T + Ẽ(2)f,:
via B̃f,: ← X̃(2)f,:

(C̃(f) �A)T†

X(3)k,:
= Ck,:(B

(k) �A)T + E(3)k,:
via Ck,: ← X(3)k,:

(B(k) �A)T†

Notice, where as A and C are updated in the real domain B is updated in the
complex domain. B is only real valued in the time domain if the following relation
holds in the frequency domain

B̃J−f+1,d = B̃∗f,d, (3)

such that B̃ is conjugate symmetric. This constraint is enforced by updating the first
bJ/2c + 1 elements, i.e. up to the Nyquist frequency, while setting the remaining
elements according to equation 3. Since the estimation is stated as regular factor
analysis problems non-negativity constraints for A and C can be imposed using
the active set procedure given in (Bro and de Jong, 1997).

2.3.2 τ update

Let

R(3)d′
k,:

= X(3)k,:
−

∑
d6=d′

Ck,d(B
(k)
d �Ad)

T,

i.e. Rd′

(3)k,:
is the remaining signal at the kth row when projecting all but the d′th

source out of X(3). Notice, with this notation the least squares error can be rewritten
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as ∑
k
‖X(3)k,:

−
∑D

d
Ck,d(B

(k)
d �Ad)

T)‖2

=
∑

k
‖Rd′

(3)k,:
−Ck,d′(B

(k)
d′ �Ad′)

T‖2

=‖Rd′

(3)k,:
‖2 −Ck,d′

∑
j
Bj−τk,d′ ,d

′
∑

i
Rd′

i,j,kAi,d′ + ‖Ck,d′(B
(k)
d′ �Ad′)

T‖2.

The first and third term is independent of τk,d′ . Thus, the least square error is min-
imized when the second term is maximized. Since Ck,d′ is a constant this can be
omitted such that we get

r
(k,d′)
j =

∑
i
Rd′

i,j,kAi,d′

c̃k,d′(f) = r̃
(k,d′)∗

f B̃f,d′ .

τ k,d′ can now be estimated as

τ̂ k,d′ = argmax
t
|ck,d′(t)|

τ k,d′ = τ̂ k,d′ − (J + 1).

I.e. as the delay corresponding to maximum absolute cross-correlation between
r(k,d′)-the time profile of the residual for the d′ component and Bd′-the component
time profile. The value of Ck,d′ corresponding to this delay is given by

Ck,d′ =
ck,d′(τ̂ k,d′)

BT
d′Bd′

.

If C is constrained positive only positive values of ck,d(t) are considered. The
above procedure can only estimate integer delays. However, by minimizing the
least squares error in the complex domain with respect to τ a gradient and Hessian
can be calculated such that non-integer delays can be estimated for instance by the
Newton-Raphson procedure. For details on this see (Mørup et al., 2007b,a).

The convergence criterion of the algorithm was set to a relative change in fit less
than 10−6 or when the algorithm had run for 1000 iterations. The parameters in
the Shifted CP model were updated in the sequence; B, τ , A, C and the updates
were accelerated using the approach suggested in (Tomasi, 2006). The number of
components were estimating using an adapted version of the core consistency di-
agnostic (Bro and Kiers, 2003).

2.3.3 Uniqueness

Unfortunately, the rigorous proof of uniqueness by Kruskal using Kruskal-rank
given in equation 2 is involved. However, the uniqueness assuming A, B and C all
have full rank can be proven by considering the CP model in a slab representation
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(Harshman, 1972; Möcks, 1988). For the kth slab the CP model reads

X:,:,k ≈ A diag(Ck,:)B
T

= AP[P−1 diag(Ck,:)Q]Q−1BT

= Â diag(Ĉk,:)B̂
T.

Thus, if two solutions A,B,C and Â, B̂, Ĉ exists there must be a mapping from
one solution to the other given by P and Q. However, for this mapping the term
P−1 diag(Ck,:)Q has to be diagonal for all k which when A, B and C have full
rank restricts P and Q to be simple scale and permutation matrices (Harshman,
1972; Möcks, 1988). For the SCP model we instead have

X:,:,k ≈ A diag(Ck,:)B
(k)T

= AP[P−1 diag(Ck,:)Q]Q−1B(k)T

= Â diag(Ĉk,:)B̂
(k)T

Where B
(k)
d = Bj−τk,d,d. Although, the CP model is extended such that B is shifted

P−1 diag(Ck,:)Q still has to remain diagonal for all values of k. This again strongly
restricts P and Q. The obvious ambiguities are scaling, permutation, relative shift
and onset as well as period of the time-series. We tested the uniqueness of the
decomposition by investigating the similarity of 250 decompositions randomly ini-
tialized. We found that the 50 decompositions with lowest least square error were
identical.

2.4 Experimental details

2.4.1 EEG data

A healthy subject was enrolled after informed consent as approved by the Ethics
Committee. EEG was recorded with 64 scalp electrodes (BioSemi c© Active elec-
trodes system) arranged according to the International 10-10 system. Additional
recordings were obtained from earlobes and at lateral canthus/brow for each eye.
The grounding electrodes for the active electrodes (CMS and DRL) were placed
centrally, close to POz. Data were recorded continuously at 2048 Hz/channel, band
pass 0.1–760 Hz, by a LabView c© application (ActivView c©). After down sampling
to 512 Hz/channel, 50 Hz electronic noise was projected out using a multiple lin-
ear regression filter in intervals of 2 seconds. Further data processing was done in
EEGLAB for MATLAB c© (Delorme and Makeig, 2004). The data were referenced
to digitally linked earlobes, high-pass filtered > 3 Hz and cut into epochs (−500
to +1500 ms). The stimulus paradigm was taken from (Herrmann et al., 2004b,a).
Briefly, it consists of two types of black and white drawings: (1) objects (Ob),
which are easily recognizable everyday type of objects like a chair, a number or
a pipe, and (2) non-objects (Nob), which are chaotic re-arrangements of the Ob
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drawings. Each stimulus category included 313 events and an object was presented
up to three times. Stimulus delivery was controlled by the Presentation c© software.
Each stimulus was presented for 1 s, and randomized inter stimulus interval was
jittering between 1.3 to 1.7 s. The stimulus presentation monitor was placed 75 cm
in front of the comfortably seated subject. To keep stimuli in focus yet keep the
object/non-object dichotomy unaware, the subject was instructed to respond with a
mouse button press depending on his judgment of the drawings as primarily having
round contours or primarily having edges. The present analysis is based on the Ob
condition thus the size of the data was I = 64 channel × J = 1024 time points ×
K = 313 epochs.

2.4.2 fMRI data

A healthy subject was enrolled after informed consent as approved by the Ethics
Committee. The fMRI dataset consisted of 381 volumes and was acquired on a
3T (Siemens Magnetom Trio) scanner using the standard birdcage head coil. Two
datasets were collected from a normal subject using an EPI GRE sequence with
40 slices acquired in interleaved order with the following acquisition parameters:
Repetition time (TR) 2370 ms, echo time (TE) 30 ms, flip angle (FA) 90 degrees,
field of view (FOV) 192 × 192 mm, 64 × 64 acquisition matrix. For visualization
purposes a high resolution anatomical scan were obtained using a magnetization
prepared rapid gradient echo (MPRGE) sequence with 192 sagittal slices and 1 mm
isotropic resolution. Additional sequence parameters were as follows: TR = 15.4
ms, TE = 3.93 ms, flip angle FA = 9 degrees, FOV = 256 × 256. In order to
demonstrate the usefulness of including shifts in the analysis we employed a sim-
ple retinotopic mapping paradigm where the subject was stimulated visually during
scanning by an 8 Hz reversing checkerboard (expanding ring and rotating wedge)
(Sereno et al., 1995), see Figure 2. This should result in a specific relative delay in
the visual areas of the brain according to the movement of the ring and wedge in the
visual field. The checkers was scaled approximately by the cortical magnification
factor (Slotnick et al., 2001) and each rotation/expansion lasted 30 seconds. Notice,
the shifts are over the voxel mode such that the SCP model should be able to cap-
tures the paradigm in a single component. The fMRI time series was co-registered
to the anatomical scan and realigned using the SPM5 software package http://
www.fil.ion.ucl.ac.uk/spm/software/spm5/, additionally the time
series were filtered prior to analysis to account for various noise sources. Several
nuisance contributions (Lund et al., 2006) was projected out using a univariate mul-
tiple linear regression model with parameters determined by maximum likelihood
estimation. The filter consisted of the following factors: High pass filter by dis-
crete cosine transform basis functions up to a cut off frequency of 1/128 Hz (18
parameters to account for hardware drift), Volterra expansion of motion parameters
including spin-history effects (Friston et al., 1996) (24 parameters), Fourier expan-
sion of the aliased cardiac and respiratory cycles using the RETROICOR method by
Glover et al. (2000) based on recording of the cardiac cycle by pulse oximetry and
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Fig. 2. Illustration of the fMRI paradigm. The top row of images illustrate how a ring of
flickering (8 Hz reversal rate) checkers expands in the visual field to generate activation
in corresponding locations in the visual cortex. This expansion lasts 30 seconds and is re-
peated 30 times in order to generate an eccentricity mapping of the visual cortex. Likewise
the second row of images illustrate the polar mapping experiment where a wedge of flick-
ering checkers rotates in the visual field.

respiratory cycles using a pneumatic belt (16 parameters), and simple subtraction of
the voxel-wise mean (1 parameter). Subsequently the data was divided into epochs
according to the stimulus cycle to form a three-way array consisting of I = 30
epochs each containing J = 14 time points recorded over K = 48435 voxels (after
masking with a rough brain mask). Due to the fact that the TR does not match the
stimulus cycle precisely the input time series within each epoch was shifted (non
integer shift) to make the time points of each epoch the same relative to the stimulus
onset.

3 Results

The SCP algorithm was first tested on a synthetic EEG data set and then used to an-
alyze the event related EEG and fMRI data described in section 2.4. For the analysis
of EEG A will pertain to spatial activity (i.e., the electrodes), B to the temporal pro-
file while C will give the epoch strength. C is constrained non-negative such that
only activities that are similar across epochs are estimated. In the analysis of the
fMRI data the roles of A and C are switched such that delays occur over the spatial
mode. Thus, A will denote the epoch strength (constrained non-negative to find
activities that are similar), B the temporal profiles and C will denote the spacial
activities (i.e., voxel strengths). C is also constrained non-negative such that the
estimated BOLD response in B is assumed to have similar temporal profile across
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the voxels.

3.1 Synthetic data

A synthetic event related EEG data set of 64 channels, of 1 second of EEG activity
sampled at 512 Hz over 105 trials was generated. The generated EEG consisted of
a 20 Hz occipital burst, a 12 Hz frontal burst, a 50 Hz constant oscillation most
prominent in the central area of the scalp and a 4 Hz slow wave. All signals were
uniformly randomly delayed across each trials by ±100 ms violating a trilinear
structure. The components of the synthetic data as well as a decomposition found
by regular CP and the proposed SCP algorithm is given in Figure 3. The core consis-
tency diagnostic of the SCP model indicated a 4 component model. For comparison
we used the same number of components for the instantaneous CP, despite that the
core consistency diagnostic here indicated a 1 component CP model.

3.2 Event related EEG data

When modeling event related data nuisance due to prominent consistent activity
over the epochs unrelated to the event such as alpha activity prior and post the
event as well as eye blinks can confound the identification of event related compo-
nents. To capture a strictly event related component in the data we constrained the
last of the SCP components in the present analysis to have a fixed delay of zero. The
remaining components including shifts should then model consistent confounding
effects not phase locked to the event. The core consistency diagnostic indicated that
5 components adequately described the data using this SCP model. Thus, in Figure
4 is given the results obtained fitting a 5 component SCP model (including the in-
stantaneous component) as well as the corresponding instantaneous CP model. The
figure also shows the time × trial ERP-image as well as the evoked potential at the
channel of maximal activity. These ERP-images are given for both the raw unshifted
data as well as the data shifted according to each of the estimated component de-
lays.

In Figure 5 the estimated visually evoked potentials given by component 5 in the
SCP (i.e., the instantaneous component) as well as instantaneous CP is given.

3.3 fMRI data

Traditionally, a retinotopic map of the visual cortex has been constructed by es-
timating the relative delays in the individual voxels caused by the sweep of the
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Fig. 3. An analysis of synthetic EEG data. Top left panel: The four components forming the
synthetic dataset; a 20 Hz occipital burst, a 50 Hz constant oscillation most prominent in the
central area of the scalp, a 12 Hz frontal burst and a 4 Hz frontal-parietal slow wave. Top
right panel: results obtained by a regular CP analysis with a SNR = −10 dB. Clearly, the
CP model has degenerated due to the violation of trilinearity, thus, forming 3 components
of more or less identical scalp maps and component time-series while the strength of each
of these components over trials are arbitrarily large counteracting the effects of the other
components. Bottom left panel: Result obtained using SCP with a SNR = −10 dB. Here,
all four components are correctly recovered. Notice, the delays for the 50 Hz and 20 Hz
components are ambiguous up to a period of the oscillations. Bottom right panel: The top
graph shows the mean correlation of the estimated sources to the true sources for various
SNR, the bottom part the absolute correlation of the components for the SCP model (to
the left) and instantaneous CP (to the right). Whereas the CP model fails in identifying
the correct components the SCP model is able to identify the sources perfectly down to
about a SNR of −10 dB. From the correlation of the components it is seen that whereas the
epoch strengths in the SCP model is uncorrelated, strong correlations are found between the
second, third and fourth component of the CP model resulting in degenerate solutions.

stimulus in the visual field. Typically these types of paradigms are analyzed us-
ing a DFT for each voxel identifying the phase (Sereno et al., 1995). This phase
can then be used to identify which part of the visual field the voxels receive their
inputs from. As such, delay modeling is crucial in the analysis of these types of
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Fig. 4. Left panel: (Top) A 5 component shifted CP model of a 64 channel × 1024 time–
points× 313 trials event related EEG data set as well as the corresponding instantaneous CP

analysis (bottom). For each component the spatial map Ad, time series Bd, histogram of
trial strengths Cd and histogram of delays τ d are given. The absolute correlation between
the various components are shown above the decompositions. Clearly, the instantaneous CP

model has found a degenerate solution in which the activity of the eye-blink has been cap-
tured in the four first components. Thus whereas the correlation between the factors is very
small for the SCP model a degenerate solution is obtained in the instantaneous CP analysis
(see correlation matrices in the top left corner of each decomposition). Right panel: ERP

images and event related potential for the channel having the maximal activity in each of
the four shifted components of the SCP model given in the left panel as well as the activity
when shifting each trial of the EEG data according to the estimated component delays τ d
(the ERP images are smoothed with a gaussian window σ = 10). Whereas the SCP model
accounts for 36 % of the variance the instantaneous CP model only accounts for 21 % of
the variation in the data. Notice, since the data is high-pass filtered (> 3 Hz) only the
high-frequency component of the eye-blink is modeled.

data. The benefits of the present SCP analysis are that the shape of the bold signal
is estimated from the data (i.e. not assumed sinusoidal) while amplitude changes
over the repeats are modeled. Ideally, the stimuli paradigm for the fMRI data should
be modeled by a single component SCP model. Thus, a one component SCP model
was estimated. To emphasize the importance of delay modeling we included for

14



Fig. 5. Investigation of the visual evoked potential (EP) (notice, the ERP images are not
smoothed). Left panel: EP of the raw EEG data at channel PO4. Middle panel: EP found by
the SCP model here shown when reconstructing the data from the visual evoked component
(component 5) in channel PO4. Right panel: EP found by the instantaneous CP model
here also shown when reconstructing the data from the visual evoked component obtained
(component 5) in channel PO4. Clearly, the estimated visual evoked component of the SCP

model has captured more of the EP of the data than the corresponding component of the
regular CP analysis. In particular the P100, N200 and P300 complex is easily identified in
the shifted CP model whereas it is more impacted by noise in the regular CP model. The
latter being more influenced by alpha activity prior to the event. Notice how each trial is
weighted by the epoch strengths estimated in the CP models (C) such that trials heavily
impacted by noise contributes less in the component identification while the corresponding
spatial map of the activity can be inspected in figure 4.

comparison a one component regular instantaneous CP model.

4 Discussion and Conclusion

From the artificial event related EEG data (see Figure 3) it was seen that the SCP

model was able to correctly identify the components of the data whereas the cor-
responding instantaneous CP analysis resulted in degenerate solutions due to the
violation of trilinearity in the data. Thus, if delays in data are causing violation of
trilinearity a viable approach to avoid degeneracy is extending the CP model to the
SCP. Thereby alleviating drawbacks such as slow convergence (the SCP model took
between 20–60 iterations in order to converge whereas the regular CP took in the
order 200–300 iterations to converge) and poor interpretability of the components
(strong cancelation effect present in the instantaneous CP decomposition).

From the real event related EEG data (see Figure 4) 5 components was identified by
the SCP model. The first component found corresponds to eye blinks that consis-
tently occur on average about 1 second post the stimulus varying across the epochs
±200 ms. The time series of component 2 and 3 both resemble alpha activity prior
and post the event as seen from the bimodal histogram of the delays. However, the
spatial location is slightly more frontal central in the third component. Neither the
time-delays nor epoch strengths are correlated thus these two components are not
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Fig. 6. The component strength (C) over voxels overlayed on the high resolution structural
scan for the one component SCP model as well as the corresponding one component instan-
taneous CP. The map was threshold such that the 5% of the voxels with the largest voxel
score C are shown, a standard Z-transform is not meaningful because C is constrained
non-negative. Top left panel: Clearly, the most prominent activity found by SCP on the
ring paradigm corresponds well with areas pertaining to visual information processing, i.e.
visual cortex. Top right panel: Also for the wedge paradigm the most prominent activity
for the one component SCP model pertains to visual cortex. Bottom left and right panel:
Since delay modeling is crucial in the present paradigms the most prominent activity esti-
mated by the one component instantaneous CP model for the ring and wedge paradigms are
no longer confined to the visual cortex.

16



2

6

10

14

(a) Ring: Est. delays τ (SCP)

0
2
4
6
8
10
12
14

(b) Wedge: Est. delays τ (SCP)

2

6

10

14

(c) Ring: Est. delays τ (DFT)

2

6

10

14

(d) Wedge: Est. delays τ (DFT)

Fig. 7. The estimated temporal delays based on the one component SCP model as well
as the traditional DFT analysis for the ring and wedge paradigms. Top left panel: Delays
estimated by SCP for the ring paradigm. Clearly, the delays are symmetric across the two
hemispheres.Top right panel: Delays estimated by SCP for the wedge paradigm. Clearly,
there is a difference in the delays between right and left visual field, i.e. right and left
hemisphere. Bottom left and right panel: Delays estimated based on the phases obtained
by a voxel-wise DFT analysis of the ring and wedge paradigms. Similar symmetries are
found as obtained by the SCP, however, the maps are not as smooth as the delay maps
found by SCP thus appear somewhat more confounded by noise.
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Fig. 8. The extracted component time-series for the ring (black line) and wedge task (blue
line) for the SCP model (solid), the corresponding instantaneous CP (dash-dotted) and the
sinusoidal time series used by the DFT based approach to estimate the delays (dotted).
Clearly, the estimated BOLD signals are more consistent between the two paradigms for
the SCP model than the instantaneous CP model while the DFT based approach does not
model the actual BOLD pattern but correlates the times series to the sinusoidal time-series
corresponding to the stimuli frequency.

degenerated. Finally, the 4th component corresponds to frontal alpha activity while
the 5th component models the EP. The importance of event related modulation of
alpha and alpha-like oscillations for cognition has been emphasized lately (Basar
et al., 2000; Pineda, 2005; Palva and Palva, 2007). Event related de-synchronization
of alpha oscillations (as seen in component 2 and 3) has been described in a vi-
sual paradigm resembling the presently used (Gruber and Müller, 2006), and in a
source location study of visual attention two sources of alpha oscillations were at-
tenuated (Gómez et al., 2006) — an occipital and a right-left occipital-temporal,
which is in agreement with the topography of the captured components, compo-
nent 3 and 2 respectively. The frontal alpha oscillations (as seen in component 4) is
suggested to reflect higher cognitive processes (Pineda, 2005). The instantaneous
CP did not facilitate a five-component model due to CP-degeneracy. Hence, the first
four components were used to span the activity of the eye blinks varying in on-
set over the trials. The last component pertained to the visually evoked potential,
however, contrary to the SCP and regular EP the component was confounded by
alpha activity in particular prior to the event, see Figure 5. Thus, not only are the
components of the SCP model in accordance with previous findings but the added
flexibility of the SCP model account for more of the variation (36% versus 21%
using 4× 313/[5× (64 + 1024 + 313)] = 17.9% more parameters). Furthermore,
the SCP model could more easily be interpreted since the decomposition did not
degenerate. Finally, the CP model allowed trials dominated by noise to be given
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little weight in the average whereas trials where the evoked activity was prominent
could be given more weight (see Figure 5). Thus, the model facilitates a weighted
average over trials and electrodes when estimating the evoked potential while the
components including delays in the SCP can remove prominent systematic nuisance
that are not time locked to the event such as eye-blink and alpha activity.

For the fMRI data the SCP model found both the regions relevant for the visual stim-
uli as well as the signal time course and the delay across voxels pertaining to the
stimuli unsupervised. The model further allowed the activity to be more prominent
in some epochs than others. The delays obtained had the expected symmetry around
the mid-sagittal plane for the ring paradigm while the wedge paradigm resulted in
a difference in delays between right and left visual field, i.e. the right and left hemi-
sphere. These delays corresponded to the delays obtained from a traditional voxel-
wise DFT analysis (Sereno et al., 1995; Engel et al., 1997; Warnking et al., 2002).
DFT assumes the time series for the delay modeling is sinusoidal and constant in
strength over the epochs. Thus the benefits of the SCP are that noisefull epochs are
given less importance in the estimation of the delays while a more complex pat-
tern of the time series improves the delay estimation. As such, the delays estimated
by the SCP model experience a more smooth behavior as would be expected than
the DFT based analysis while the expected delay symmetries were more prominent.
While the DFT based approach uses 2×48435 the SCP uses 2×48435+14+30, i.e.
0.05% more parameters. The estimated BOLD time series found by SCP were con-
sistent across stimuli paradigms and with what is typically reported in the literature
(Boynton et al., 1996). Presently we considered stimuli induced delays - however,
in general, the SCP model should also be able to capture delays in the hemody-
namic response caused by other effects for instance caused by local differences in
physiology or sequential information processing in the brain.

Extending the analysis of 2-way data such as channel× time averages to channel×
time× trials the 3-way decomposition is generally unique and does not require ad-
ditional constraints such as independence which is not necessarily physiologically
justified. Furthermore, weighting the components over trials makes it possible to
reduce the influence of trials where the presence of the component is weak, for
instance due to corruption by noise. Thus the extension of two-way factor analy-
sis to three-way SCP indeed forms a model that can take into account trial specific
information as well as decompose the data unambiguously such that interpretabil-
ity is improved. Finally, the degeneracies occurring when previously modeling the
neuroscience data by CP have given strong indication that this type of model is
inadequate. By the present extension of the CP model allowing for shifts we have
demonstrated that CP-degeneracy is no longer a major concern, thus, shifts seem to
be an important cause of violation of trilinearity in the data. Presently, we extended
the CP model to include shifts over one mode. The model can be extended to include
shifts over additional modes and can also be generalized to data of more modalities
than three which naturally arises for instance when including modes such as sub-
jects, conditions or runs (Andersen and Rayens, 2004). Presently, the focus was set
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on neuroscience data such as EEG and fMRI, however, the model should be readily
applicable to other types of neuroimaging data such as magnetoencephalography
(MEG) and positron emission tomography (PET). Presently, the model was used un-
supervised, however the model can also be used supervised for instance to find the
delays of given, known activities.
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